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Statistical learning is the automatic and unconscious learning of environmental regularities
and is a basic mechanism of learning in a variety of human perceptual and cognitive
domains. Previous studies have mainly focused on the associative mechanisms of statistical
learning. However, an unexplored question is whether the internal representations of indi-
vidual stimuli are altered as their associations are learned. Using a temporal statistical
learning paradigm, we examine this question across three experiments and find clear evi-
dence that the internal representations of individual stimuli are differentially altered
according to their degree of temporal predictability. These findings complement previous
accounts of statistical learning and reveal an enriched mechanism of human learning, such
that learning to associate items also enhances the representations of certain items relative
to others.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Statistical learning is the automatic and unconscious
learning of environmental regularities (Fiser & Aslin,
2001; Kim, Seitz, Feenstra, & Shams, 2009; Saffran, Aslin,
& Newport, 1996; Saffran, Newport, & Aslin, 1996). It is
one of the most basic mechanisms of learning in human
perceptual and cognitive domains, and it has been studied
in relation to language acquisition (Saffran, Aslin, et al.,
1996; Saffran, Newport, et al., 1996), attention (Baker, Ol-
son, & Berhmann, 2004; Toro, Sinnett, & Soto-Faraco,
2005; Turk-Browne, Jungé, & Scholl, 2005), development
(Kirkham, Slemmer, & Johnson, 2002; Saffran, Aslin et al.,
1996; Saffran, Johnson, Aslin, & Newport, 1999), vision
(Fiser & Aslin, 2001, 2002, 2005; Kim et al., 2009; Olson
& Chun, 2001; Turk-Browne et al., 2005), audition (Saffran
et al., 1999; Seitz, Kim, van Wassenhove, & Shams, 2007),
and haptics (Conway & Christiansen, 2005). Research on
statistical learning has focused on the mechanisms that
drive the learning of associations between groups of stim-
uli, but it has not explored how the internal representa-
tions of the individual stimuli may also be altered as
their associations are learned (e.g., O’Brien and Raymond,
2012). In fact there is a divide between the field of percep-
tual learning (Sagi, 2011), which concentrates on represen-
tational changes that occur during slow, explicit, training
procedures, and the field of statistical learning, which
emphasizes implicit, quickly developing, stimulus–stimu-
lus associations.

The typical approach in statistical learning research is
to expose participants to sets of stimuli that have statisti-
cally reliable spatial and/or temporal relationships and to
test their ability to recognize these statistically associated
stimuli. Studies consistently show that human observers
are sensitive to these statistically reliable relationships
and these groupings are judged to be more familiar than
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novel combinations of stimuli that have been presented an
equal number of times as those in the familiar group (Fiser
& Aslin, 2001, 2002, 2005; Saffran et al., 1999). But what is
it that drives this perception of familiarity? A recent neuro-
imaging study found that participants’ sense of familiarity
for learned sequential pairs was correlated with the fMRI
signals related to the second, but not the first, item of the
pairs (Turk-Browne, Scholl, Johnson, & Chun, 2010). This
suggests that individual group items are processed differ-
ently during statistical learning, which may be indicative
of differential encoding of their representations. Similarly,
research shows that exposure to repeated sequences of
shapes leads to faster response times to shapes at the
end of a given sequence compared to those at the begin-
ning (Kim et al., 2009; Olson & Chun, 2001; Turk-Browne
et al., 2005). While this reduction in reaction times for later
group items has been interpreted as a priming effect (i.e.,
temporal predictability), an unexplored possibility is that
of element learning (i.e., improved internal representations
of individual predictable items). In other words, it is possi-
ble that, in addition to the associative learning mecha-
nisms that operate during statistical learning, there may
be perceptual learning mechanisms that shape the repre-
sentations of individual items according to their degree
of temporal predictability.

To directly address the hypothesis that stimulus repre-
sentations change through statistical learning, we exam-
ined participants’ responses to individual stimuli both
within and outside of learned associative groupings. We
utilized a paradigm of temporal statistical learning where-
in individual items are grouped into sequences of fixed
sequential order, and these groups are in turn presented
repeatedly in a randomized order (Fiser & Aslin, 2002;
Kim et al., 2009; Turk-Browne et al., 2005). In this para-
digm, each item has a particular degree of temporal pre-
dictability according to its position within its group. For
instance, an item that appears early in a given group is less
predictable than an item that appears later in that group.
Across three experiments, we tested participants’ re-
sponses to individual items both within and outside the
context of their temporal groupings.

2. General method

In all experiments, participants were exposed to a
stream of rapidly presented visual (abstract black-and-
white shapes adapted from Fiser & Aslin, 2001) and audi-
tory stimuli (abstract computer-generated sounds from
Fig. 1. (a) Example visual stimulus set. (b) Example schematic of the stimulus st
spectrograms.
Kim et al., 2009). Visual stimuli were grouped into six asso-
ciate pairs (randomly generated for each participant),
whereas auditory stimuli were presented in a pseudoran-
domized order and acted as distractors (except in Experi-
ment 1b where sounds were grouped into pairs and
visual stimuli were pseudorandomized and used as dis-
tractors). Visual and auditory stimuli were presented syn-
chronously for 300 ms and with an inter-stimulus interval
(ISI) of 100 ms (see Fig. 1). Pairs were presented 150 times
each in a random sequence (except no pair was repeated in
succession).

In each experiment, all test conditions were pseudoran-
domly interleaved and no feedback was given. For Experi-
ments 1a and 1b, sample sizes were based on previous
studies of visual (Kim et al., 2009; Turk-Browne et al.,
2005) and auditory (Saffran, Aslin et al., 1996; Saffran
et al., 1999) temporal statistical learning, and for Experi-
ment 2 we conducted a power analysis to estimate the
sample size needed to detect a small to medium effect size,
as expected from a pilot study. See Supplemental material
for additional details about our stimuli and apparatus.

3. Experiments 1a and 1b: Are speeded responses for
second items a result of priming?

In our first set of experiments we used a variation of a
reaction time test used in previous statistical learning
studies (Kim et al., 2009; Olson & Chun, 2001; Turk-
Browne et al., 2005). The novelty of our approach is that
we measured reaction times for both intact and broken
pairs so as to compare responses to the individual items
both in the presence and absence of their learned
associations.

3.1. Method

Undergraduate students (Experiment 1a: 12 partici-
pants, 19–29 years, 5 females; Experiment 1b: 31 partici-
pants, 18–28 years, 21 females) passively observed a
stream of visual pairs (Experiment 1a; in this case the
auditory stream was randomized) or auditory pairs (Exper-
iment 1b; in this case the visual stream was randomized).
Participants then completed 120 test trials. In each trial
they were first presented with a target stimulus, which
they were instructed to detect (via a key press) in a subse-
quent stream of 10 rapidly presented stimuli (see Fig. 2a).
In Experiment 1a each test stream consisted of visual stim-
uli only, and in Experiment 1b each test stream consisted
ream in the exposure phase. The auditory stimuli are represented by their



Fig. 2. (a) Example schematic comparing a match and mismatch trial in the reaction time test used in Experiment 1a. An analogous test using auditory
stimuli was used in Experiment 1b. (b) Results of Experiment 1a. (c) Results of Experiment 1b. Error bars indicate within-subject standard error of the mean.
(* denotes p < .05).
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of auditory stimuli only. Each test stream consisted of five
of the stimulus pairs presented in a psuedorandomized or-
der with the constraint that the target item was never in
the first two or last two positions of the stream. The stim-
ulus durations and ISI were identical to those used in the
exposure phase (300 ms and 100 ms, respectively). The tar-
get item was either the first or second item of a pair and
was followed (item 1 condition) or preceded (item 2 condi-
tion) by either its pair-item (match condition) or by an-
other item (mismatch condition) from a pair not included
in that trial’s test stream. Each stimulus was tested an
equal number of times in a pseudorandom order, with
the constraint that items from the same pair could not be
targets on consecutive trials.

Participants’ reaction time data were trimmed of outlier
responses by removing reaction times that were 2 or more
standard deviations above or below each participant’s
mean. Additionally, we omitted trials in which participants
responded before the onset of the target. These omissions
resulted in the removal of approximately 4% of responses
overall.

3.2. Results

Replicating prior studies of statistical learning (Kim
et al., 2009; Turk-Browne et al., 2005), we found that par-
ticipants exposed to visual pairs (Experiment 1a; Fig. 2b)
responded faster to second items (M = 334 ms, SD = 26.9)
than first items (M = 347 ms, SD = 26.8), with a 2 (trial
type: match vs. mismatch) � 2 (target item: item 1 vs. item
2) repeated measures ANOVA showing a significant main
effect of target item, F(1, 11) = 10.90, p < .01, g2

p ¼ :50.
To test whether the second item advantage was due to
element learning for the second items, response times
were compared between match and mismatch trials. We
found no effect of trial type, F(1, 11) = .001, p = .97, nor
interaction between trial type and target item, F(1,
11) = .015, p = .91. To further examine the effect of trial
type, paired t-tests (two-tailed) were performed. In the
match condition, reaction times were faster for second
items (M = 334 ms, SD = 28.3) than first items
(M = 347 ms, SD = 25.9), t(11) = 3.60, p < .01, d = 1.04. Simi-
larly, in the mismatch condition, reaction times were faster
for second items (M = 334 ms, SD = 25.9) than first items
(M = 347 ms, SD = 29.5), t(11) = 2.24, p < .05, d = .65. These
results suggest that the speeded responses for second
items may be due to differential item learning rather than
priming by the first item.

To test the generality of this effect, we examined statis-
tical learning for auditory pairs (Experiment 1b; Fig. 2c).
Here, we observed the same pattern of results, with signif-
icantly faster responses to second items (M = 387 ms,
SD = 43) than first items (M = 401 ms, SD = 46.5) as indi-
cated by a main effect of target item, F(1, 30) = 6.98,
p < .05, g2

p ¼ :19, but no effect of trial type, F(1, 30) = .004,
p = .95, nor interaction between trial type and target item,
F(1, 30) = .402, p = .53. Given the results of Experiment 1a,
we ran one-tailed paired t-tests for Experiment 1b. In the
match condition, reaction times were faster for second
items (M = 386 ms, SD = 46) than first items (M = 402 ms,
SD = 43), t(30) = 3.03, p < .01, d = .54. Similarly, in the mis-
match condition, reaction times were faster for second
items (M = 388 ms, SD = 45) than first items (M = 400 ms,
SD = 54), t(30) = 1.74, p < .05, d = .31.
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Together, the results of Experiments 1a and 1b show
clear evidence that speeded responses to second items
are not simply due to a priming of second items by their
associated first items, as speeded responses were found
for second items even in the mismatch condition. This indi-
cates that there may be enhanced sensitivity to second
items relative to first items as a result of statistical learn-
ing, and this hypothesis was examined directly in Experi-
ment 2.

4. Experiment 2: Do second item benefits exist outside
of a temporal context?

Experiments 1a and 1b showed a benefit for second
items that could not be explained by priming by their asso-
ciated first items. However, the stimulus sequence in the
testing phase was very similar to the exposure phase and
it may be that first items yield a non-specific priming to
second items. Furthermore, participants were presented
with the target item at the start of each trial and, therefore,
the second item benefit could have originated either from
top-down processes (such as attention) or bottom-up pro-
cesses (such as representational changes). To address these
issues, in Experiment 2 we used a two-interval forced
choice shape detection test in which participants were
not explicitly informed of the target item at the start of
each test trial. As such, participants had to rely entirely
on bottom-up sensory information to detect the target
stimulus. Importantly, an individual stimulus was tested
on each trial; therefore none of the paired associations
from the exposure phase were present during the detec-
tion test. To control for initial saliency differences between
individual items in our stimulus set, we had participants
complete the shape detection test both before and after
the exposure phase. Thus, our key measure of interest
was participants’ pre- versus post-exposure change in sen-
sitivity for first and second items of pairs.

4.1. Method

Forty-three participants (ages 18–37; 33 females)
underwent an exposure phase identical to Experiment 1a
except that a cover task (adapted from Turk-Browne,
Fig. 3. Example schematic of the two-interval forced c
Scholl, Chun, & Johnson, 2009) was implemented during
the exposure phase to ensure that participants attended
to the stimuli during exposure (see Supplemental material
for details).

The shape detection test was completed both before
and after the exposure phase (96 trials per test). On each
trial, participants indicated which of two intervals con-
tained a shape (other than the fixation cross) by pressing
one of two keys. The shape (i.e., the target) was the first
or second item of one of the pairs from the exposure phase.
In both intervals, a forward and backward mask obscured
the stimulus-period (i.e., the period during which the tar-
get shape could appear; see Fig. 3). Each mask was dis-
played for 100 ms and the stimulus-period was displayed
for �10 ms. The ISI between the stimulus-period and the
masking stimuli was �40 ms (easy-ISI) or �30 ms (diffi-
cult-ISI); the ISI values differed between participants
according to a calibration run for each participant. There
were an equal number of easy- and difficult-ISI trials. For
the post-exposure test, the trials were divided into four
blocks, which were interleaved with three brief top-up
blocks of exposure stimulus stream. See the Supplemental
material for details about the masking stimuli, calibration,
and top-up blocks.
4.2. Results

To examine performance differences between first and
second items, we calculated participants’ sensitivity (d0)
as defined in Stanislaw and Todorov (1999). The data were
analyzed using a 2 (difficulty: easy vs. difficult) � 2 (test:
pre-test vs. post-test) � 2 (target item: item 1 vs. item 2)
repeated measures ANOVA. As expected, there was a sig-
nificant main effect of difficulty, where participants
showed greater sensitivity in the easy-ISI condition
(M = 2.25, SD = 1.53) compared to the difficult-ISI condition
(M = 1.22, SD = 1.34), F(1, 42) = 62.34, p < .001, g2

p ¼ :60.
There was also a significant main effect of test, such that
participants showed greater sensitivity in the post-test
(M = 1.89, SD = 1.41) compared to the pre-test (M = 1.57,
SD = 1.40), F(1, 42) = 9.09, p < .01, g2

p ¼ :21.
A significant interaction between test and target item

indicated enhanced learning for second items compared
hoice shape detection test used in Experiment 2.



Fig. 4. Change in sensitivity results of Experiment 2, collapsed across the
easy- and difficult-ISI conditions. Error bars indicate within-subject
standard error of the mean (* denotes p < .05).
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to first items, F(1, 42) = 5.19, p < .05, g2
p ¼ :11 (see Fig. 4).

When collapsed across difficulty, there was a significant
pre-test (M = 1.46, SD = 1.51) to post-test (M = 1.93,
SD = 1.59) increase in sensitivity for second items, F(1,
42) = 18.14, p < .001, g2

p ¼ :30, but not first items (pre-test:
M = 1.67, SD = 1.36; post-test: M = 1.86, SD = 1.30; p = .13).
As there was a noticeable pre-exposure difference between
first and second items (i.e., before any learning could have
occurred), to ensure this did not affect our results we per-
formed a follow-up analysis wherein the pre-test perfor-
mance for first and second items was equated (i.e., by
omitting outlier items) and found the same pre- to post-
test increase in sensitivity for second items (p = .001), but
not first items (p = .20; see Supplemental material for more
details about the follow-up analysis). Additionally, an
examination of simple effects revealed that the second
item benefit was consistent across both levels of difficulty,
such that for both the easy- and difficult-ISI conditions
there was a significant pre- to post-test increase in sensi-
tivity for second items (ps < .01), but not first items
(ps > .23). These results confirm that statistical learning re-
sults in differential learning for first and second elements
in temporally associated pairs.
5. Discussion

The first indication that statistical learning might differ-
entially influence individual stimuli was found in early
studies of auditory statistical learning. Specifically, after
being exposed to sets of trisyllabic sequences (i.e., non-
sense words; Saffran, Newport, et al., 1996) or tritone se-
quences (Saffran et al., 1999), participants completed a
familiarity test in which the patterns of their false alarms
indicated a potential difference in their familiarity for ele-
ments at the ends of the sequences compared to those at
the beginning. Our study extends this finding by showing
that statistical learning can differentially influence re-
sponses to individual items, and this differential process-
ing exists even when tested outside of their learned
groupings and in a context that greatly differs from that
of the exposure phase. Specifically, we found that statisti-
cal learning can lead to differences in the saliency of pre-
dictable (second) compared to less predictable (first)
items.
Our results are also consistent with other research
showing that statistical learning can result in flexible inter-
nal stimulus representations. For instance, Turk-Browne
and Scholl (2009) showed that learning of temporal associ-
ations transferred to a spatial task and, conversely, that
learning spatial associations transferred to a temporal task.
Such flexibility suggests that statistical learning may in-
duce representational changes (i.e., perceptual learning)
in sensory regions of the brain that are involved in process-
ing the stimuli. Consistent with this, a recent fMRI study on
visual statistical learning (Turk-Browne et al., 2009) found
that brain regions involved in representing the individual
stimuli (i.e., lateral occipital cortex and ventral occipito-
temporal cortex) showed a change in neural processing
when the stimulus stream contained a statistical structure
(i.e., temporally associated stimuli) compared to when it
was random. These results are consistent with the hypoth-
esis that sensory areas are sensitive to statistically predict-
able stimuli and that this may lead to a change in the
saliency of these stimuli.

Still, a critical question remains: why should second
items of pairs become more salient than first items, rather
than the converse? Although the current experiments were
not designed to reveal which mechanisms might be at play,
there are some plausible mechanisms about which we can
speculate. Studies of statistical learning have clearly dem-
onstrated that humans are able to learn statistical regular-
ities in the environment and that this learning arises
without instruction or intention. This is in line with the
idea, put forth by Biederman and Vessel (2006), that hu-
mans are ‘‘infovores’’ who have an innate drive to extract
information from the environment. If we assume that the
sense of familiarity that accompanies the discovery of a
predictable pattern can be intrinsically rewarding, then it
may be possible to consider statistical learning within
the framework of reinforcement learning. In the context
of the current study, it would likely be the case that an
intrinsic reward would be associated with the presentation
of the second item of a pair (i.e., the time point at which an
anticipated pair is confirmed). Indeed, as discussed earlier,
in an fMRI study of temporal statistical learning it was
found that participants’ sense of familiarity for learned
pairs versus novel pairs was correlated with the neural
processing of second items, but not first items (Turk-
Browne et al., 2010).

If the sense of familiarity related to the processing of
second items can act as an intrinsic reward, then how
might this affect the internal representations of first versus
second items? At first glance, one might expect first (i.e.,
predictive) items to be enhanced relative to second items.
For instance, O’Brien and Raymond (2012) found that stim-
uli that were highly predictive of a monetary win or loss
during an initial conditioning phase were subsequently
more salient in a recognition task than stimuli that were
weakly predictive (or not predictive) of a monetary out-
come. However, their participants explicitly learned stimu-
lus-outcome associations, whereas in the current study
participants implicitly learned stimulus–stimulus associa-
tions, which makes it difficult to draw comparisons be-
tween these studies. Instead, there are many aspects of
the current study that are more in line with studies of
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task-irrelevant perceptual learning wherein stimuli that
are presented at behaviorally relevant times are enhanced
(Seitz & Watanabe, 2005, 2009); for example, when a par-
ticular visual feature (e.g., orientation or motion direction)
repeatedly co-occurs with a salient event (e.g., a reward or
task-related target), participants subsequently show in-
creased sensitivity to that visual feature in a detection task
(Seitz, Kim, & Watanabe, 2009; Seitz & Watanabe, 2003).
Seitz and Watanabe (2009) propose that task-irrelevant
perceptual learning is gated by reinforcement signals and
that stimuli that are concurrent with, and not those that
are purely predictive of (Swallow & Jiang, 2011), the re-
lease of these signals are those that are best learned. Con-
sidering this in the context of the current study, it is
possible that second items repeatedly co-occurred with
an implicit sense of familiarity (i.e., an intrinsic reward)
and that this caused participants to experience enhanced
perceptual learning of second items compared to first
items.

An attentional mechanism might also explain the cur-
rent results. Recent research on temporal statistical learn-
ing has shown that attention is automatically drawn to
statistically reliable stimuli (Zhao, Al-Aidroos, & Turk-
Browne, 2013). Thus, in the current paradigm, when first
items cue second items during the exposure phase, they
may lead to more attentional resources being devoted to
the processing of second items, which would in turn en-
hance the encoding of those items’ internal representa-
tions. Of course, attentional and reinforcement
mechanisms are not mutually exclusive (e.g., Seitz &
Watanabe, 2009), and future studies are needed to clarify
the mechanisms leading to the asymmetric item-learning
effect observed in the current experiments.

An interesting question is the extent to which the cur-
rent results would extend to, and be impacted by, statisti-
cal manipulations other than the bi-directional joint-
probabilities employed in our exposure phase. For exam-
ple, research on reinforcement learning shows that inter-
mediate transitional probabilities can lead to greater
activity in the ventral tegmental area (Fiorillo, Tobler, &
Schultz, 2003) and to greater learning (Yu & Dayan,
2005). Therefore, it may be hypothesized that a U-shaped
effect function could be found peaking at a transitional
probability of .75. Additionally, whether backward transi-
tional probabilities (Pelucchi, Hay, & Saffran, 2009; Perru-
chet & Desaulty, 2008) or conditional probabilities (Fiser
& Aslin, 2001; Fiser & Aslin, 2002) can impact item-learn-
ing remains to be studied.

Overall, our results suggest that temporal statistical
learning can result in differences in individual item sal-
iency. Our findings demonstrate that temporal statistical
learning is flexible and likely has overlapping mechanisms
with perceptual learning.
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