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Abstract

Labeled Graph Matching (LGM) has been shown successful in numerous object vision tasks. This method is the basis for arguably the best

face recognition system in the world. We present an algorithm for visual pattern recognition that is an extension of LGM (`LGM1'). We

compare the performance of LGM and LGM1 algorithms with a state of the art statistical method based on Mutual Information Maximization

(MIM). We present an adaptation of the MIM method for multi-dimensional Gabor wavelet features. The three pattern recognition methods

were evaluated on an object detection task, using a set of stimuli on which none of the methods had been tested previously. The results

indicate that while the performance of the MIM method operating upon Gabor wavelets is superior to the same method operating on pixels

and to LGM, it is surpassed by LGM1. LGM1 offers a signi®cant improvement in performance over LGM without losing LGM's virtues of

simplicity, biological plausibility, and a computational cost that is 2±3 orders of magnitude lower than that of the MIM algorithm. q 2001

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Computer vision of objects and faces comprises a multi-

tude of tasks: detection, recognition, alignment, pose esti-

mation, scene analysis, tracking, etc. Most algorithms

developed in this realm are designed for one of these tasks

and rarely generalize to others. For instance, the neural

network developed by Rowley, Baluja, & Kanade, 1995 is

highly successful in detecting faces in scenes, but not

capable of recognition, and the face recognition algorithms

developed in Pentland's laboratory (Turk & Pentland, 1991)

are successful for face recognition but are not as apt at

locating them.

However, the pattern recognition tasks mentioned above

are highly related and, from a biological perspective, it

seems likely that the brain uses mechanisms in these

modules that are based on the same principles and rely on

the same basic type of object representation. An algorithm

that has been applied to all of the aforementioned vision

tasks is Labeled Graph Matching (LGM) (von der

Malsburg, 1988). LGM represents each pattern as a labeled

graph where each node is labeled with a feature and the

links between nodes encode topological relationships.

Patterns are extracted and recognized by means of ®nding

the optimal correspondence between two graphs. The

implementations of LGM have primarily used responses

of a family of Gabor wavelets as the label for each node,

representing the local gray-level distribution of the image.

This approach has had considerable success in various

domains, including object detection and recognition

(Konen & VorbruÈggen, 1993; Konen, Maurer, & von der

Malsburg, 1994), face detection and recognition (Lades,

VorbruÈggen, Buhmann, Lange, Malsburg, WuÈrtz, &

Konen et al., 1993; Wiskott, Fellous, KruÈger, & von der

Malsburg, 1997; Wiskott & von der Malsburg, 1995),

gender determination (Wiskott, Fellous, KruÈger, & von

der Malsburg, 1995), scene analysis (Wiskott, 1996a,b;

Wiskott & von der Malsburg, 1993), pose estimation

(KruÈger, PoÈtzsch, & von der Malsburg, 1997), face rotation

(Maurer & von der Malsburg, 1995), tracking (Maurer &

von der Malsburg, 1996), and object shape feature learning

(Shams & von der Malsburg, 1999).
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Recently, there has been a surge of statistical approaches

to the problems of pattern recognition, mostly based on

information theoretic notions, such as entropy (Viola,

1995), Shannon information (Becker, 1995), and description

length (Bienenstock, Geman, & Potter, 1997). A statistical

approach which has enjoyed much attention in the past few

years and has been adopted by several different groups is

Mutual Information Maximization (some examples are

(Collignon, Maes, Delaere, Vandermeulen, Suetens, &

Marchal, 1995; McGarry, Jackson, Plantec, Kassell, &

Downs, 1997; Moskalik, Carson, Meyer, Fowlkes, Rubin,

& Rubidoux, 1995; Pluim, Maintz, & Viergever, 2000;

Studholme, Hill, & Hawkes, 1996; Viola, 1995; Viola &

Wells, 1995)).

In contrast to the solid statistical foundation of these

methods, LGM has neither been derived from statistical

principals nor does it explicitly exploit statistical image

propertiesÐLGM was designed based on biological plau-

sibility, and invariant recognition constraints. An open

question, thus, becomes how well LGM performs in

comparison to these state-of-the-art statistical methods.

In this paper, we will introduce a new version of LGM

that exploits the topology of an image through lateral inter-

actions. For comparison, we adapt Viola's mutual informa-

tion maximization (MIM) approach (Viola, 1995; Viola &

Wells, 1995) to operate on the same Gabor wavelets as

LGM. Viola's method was chosen for comparison as it is

the pioneering work for a number of research efforts under-

taken by various groups using the same method, and has

been applied successfully to real images and to several

pattern recognition applications. To render the study as

objective as possible, we chose a task that both methods

have primarily been applied to: object detection. In the

remaining of the paper, we ®rst describe the image repre-

sentations we employ. Second, we introduce our new LGM

method, or LGM1, and the adapted version of Viola's

Mutual Information approach. We will proceed by describ-

ing the pattern recognition task used for the study, and

conclude with an empirical evaluation of the three methods:

MIM, LGM, and LGM1.

2. Image representation

The image representation we use is modeled after the

feature detectors found in the mammalian primary visual

cortex (V1). Each image is coded by a ®xed grid of feature

vectors modeled after cortical hypercolumns (Fig. 1).

Given an image with gray values Wm
1 de®ned on a two-

dimensional lattice J of pixel positions m [ J, the Gabor

transform, oriented along the vector k, is given as

Jkm �
X
m 0

Wm 0ck�m 2 m 0�; m;m 0 [ J with

ck�m� � kT k

s 2
e

2
kT k mTm

2s 2 eikTm 2 e2s 2
=2

� � �1�

where the kernel ck�m� is a Gabor wavelet (Grossmann &

Morlet, 1985). For each single point of the visual ®eld, we

assume a sampling of the frequency domain at three

frequency levels, F, and, within a frequency level, at a set

of four orientations, O, resulting in a 12-dimensional feature

vector f [ F £ O (Fig. 1), called a `jet' (Buhmann, Lange &

von der Malsburg, 1989). Jets are conceived of as a simple

model of hypercolumnar activity of visual cortex. As in

biological complex cells, only magnitude2 of Gabor

responses are used (von der Malsburg, Shams, & Eysel,

1998).

3. Algorithms for matching

3.1. Labeled graph matching

A visual pattern can be represented via a graph containing

nodes labeled with local features and links encoding the

topological relationship between the features (Bienenstock

& von der Malsburg, 1987). Based on this representation,

the problem of pattern recognition can be formulated as

labeled graph matching (LGM), where the goal is to ®nd

the one-to-one correspondence between the nodes of an

input graph and those of a stored graph (Bienenstock &

von der Malsburg, 1987). A good correspondence is one

that respects the topological relationships between the
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Fig. 1. Sketch of an image with a superimposed labeled graph. Each graph

node is `labeled' with a Gabor Jet, a vector of magnitudes of Gabor wavelet

®lter responses of different frequencies and orientations. The Gabor Jet can

be conceived of as a computational model of cortical hypercolumns. Gabor

wavelets of three different orientations at two different spatial frequencies

are displayed in the right side of the ®gure. In our implementation, we use

four orientations at three spatial frequencies.

1 In our notation, matrices are denoted by bold-face capitalized letters,

e.g., M, vectors are bold-face small letters, e.g., v, while for scalars small

letters in italics are used, e.g., s.

2 Gabor components can be expressed in terms of amplitude and phase,

Jkm� uJkmueifkm. We refer to the amplitudes uJkm as Gabor magnitudes.



nodes, and ®nds high similarity between the labels of the

corresponding nodes. Neural implementations of LGM have

previously illustrated its biological plausibility as a method for

pattern recognition, exempli®ed in the Dynamic Link

Architecture (DLA)3 (von der Malsburg, 1981; von der Mals-

burg, 1988; Willshaw & von der Malsburg, 1976). In this

paper, we will employ an algorithmic formulation of LGM.

In our implementation, a graph is a rigid lattice of Gabor

Jets (Fig. 1). The traditional measure of similarity s (Lades,

1994; Wiskott et al., 1997) between two Gabor Jets fi and fj

is the cosine of the angle between the two jets:

s�f i; f j� �
fT

i f j

if ii if ji
�2�

This measure is useful as it provides robustness to the

amount of contrast. The similarity between two graphs, G

and G 0 with sets of node labels V� {f1, f2, ¼, fn} and

V 0 � {f 01, f 02,¼, f 0m}, respectively, is

S�G;G 0� �
Xn

i�1

s�f i; f
0
q�i�� �3�

where q�i� � j is the index of the jet to which f i has been

mapped.

In our implementations, the spacing between neighboring

graph nodes is seven pixels. Using 128 £ 128 images, this

leads to graphs containing 120±150 nodes, depending on

the size of the scenes. This sparse sampling is only used

for the stored models in the memory, called model graphs.

The images of the scenes to be recognized are represented

without spatial subsampling (i.e., Gabor jets are taken at

every pixel). Even in the representation provided by the

model graphs, however, the patterns are represented in

their entirety due to the overlap in both space and frequency

domains between receptive ®elds of neighboring Gabor

wavelet kernels.

LGM is inherently capable of coping with variations in

size, translation, rotation, deformation, etc. In this paper,

however, we will restrict our investigations to stimuli

(Section 4.1) with only translation within cluttered scenes,

such that only the spatial coordinates need to be searched in

the graph matching process. Extensions to other image

variations can simply be implemented by extending the

search to include these additional dimensions.

3.2. LGM1: labeled graph matching enhanced with lateral

excitation

In our new variant of LGM, we augmented the graph

similarity function with an element that emphasizes the

topological coherence of the match. The new graph similar-

ity function SÄ involves the enhancement of each pairwise

similarity value s by its neighboring similarity values.

~S�G;G 0� �
Xn

i�1

~s�f i; f
0
q�i�� �4�

~s�f i; f
0
q�i�� � s�f i; f

0
q�i��1 s�f i; f

0
q�i��

X
r

s�fr; f
0
q�r�� �5�

where r is the index of neighbors of fi in graph topology, and

q(r) the index of the jet matched with fr. The data shown in

the paper were obtained with a neighborhood function

which spans two jets away from fi, however the neighbor-

hood can be restricted to only the immediate neighbors (i.e.,

one jet away) and the performance would degrade only

slightly. The biological analog of this function can be

found in the lateral excitatory interactions among the neigh-

boring V1 hypercolumns (Gilbert, 1992).

The second term in Eq. (1) is the excitation received by

s�f i; f
0
q�i��. As it can be seen, the amount of excitation

directly depends on the value of s�f i; f
0
q�i��. This is consistent

with the physiological ®ndings in the visual cortex. It has

been shown that `¼the level of excitation induced by acti-

vating the horizontal inputs depends on the level of depo-

larization of the target cell: the more depolarized the cell is,

the larger the excitatory postsynaptic potential, as the result

of voltage-dependent sodium conductances. Thus, one can

think of the effect of the horizontal connections as being

state dependent and in¯uenced by the level of activation

of other inputs converging onto the cell (Hirsch & Gilbert,

1991)' (Gilbert, 1992, pp. 125). The function of this lateral

excitation during graph matching is discussed in detail in the

Discussion Section. As will be demonstrated below, the

small change of adding lateral excitation to the original

LGM has a profound impact on the performance of LGM.

3.3. Mutual information maximization

Viola's method of matching two images (Viola, 1995;

Viola & Wells, 1995) is based on the concept of mutual
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3 In this architecture two separate neural layers represent the input and the

stored graphs. Graph nodes and graph links are represented by neurons and

excitatory connections between the neurons, respectively. Node labels are

represented by the receptive ®eld pro®les of the neurons. The correspon-

dence between the two graphs is found through a dynamical process where

at the ®nal state each neuron in the input layer is linked (or mapped on) to its

corresponding neuron in the stored model layer, and the global pattern of

the links (implicitly) represents the type of global transformation the model

has undergone. The matching process is driven primarily by transient or

dynamic links between the neurons of the two layers. Typically a fast

synaptic plasticity mechanism mediates this process. Within a layer, neigh-

boring neurons, and between the layers those with similar labels (and

neighbors, after the initial stage) are correlated. Dynamic links are estab-

lished between neurons whose temporal patterns of activation are corre-

lated. These links, in turn, induce temporal correlation between the neurons

they link together. This positive feedback loop will stabilize when all the

nodes that correspond to each other are linked together in a coherent one-to-

one fashion. Therefore, temporal correlation underlies a binding between

nodes which eventually serves as the basis for ®nding correspondences (for

a more detailed account of the dynamics see (Konen & von der Malsburg,

1992; Lades et al., 1993; Willshaw & von der Malsburg, 1976)). The

anatomical correlates of the input and model layers can be conceived to

be V1 (and/or V2) and inferotemporal (IT) cortex, respectively. Dynamic

links can be interpreted as synaptic weights modi®ed in a Hebbian fashion.



information maximization (MIM), where the best corre-

spondence of an image with a template is determined by

the alignment that obtains the highest value of mutual infor-

mation:

I�U;V� � H�U�1 H�V�2 H�U;V� �6�
Here H( z ) denotes the entropy (or joint entropy, in the

last term), and U and V are sets of data points Ui and vi (with

i� 1 ¼ n), respectively, for the two images or image

regions to be matched. The order of the data points in U
and V is not arbitrary but rather according to the order of

pixels in the images, e.g., in an image row-by-row fashion.

Without this ordering, the joint entropy in Eq. (6) would be

ill de®ned. The joint entropy requires pairing data points ui

and vj. This pairing is analogous to the pairing in jet correla-

tion Eq. (2) in LGM, hence this ordering also introduces a

sensitivity to topology in Eq. (6) comparable to the original

LGM algorithm. Empirical values for the entropy measure

can be obtained based on Parzen density estimates of the

image probability densities (Duda & Hart, 1973):

H�W� � n E{ 2 ln p�W�}

< 2
X
m[J

ln
1

n 2 1

X
m 0±m[J

w�Wm 2 Wm 0 ;S�
0@ 1A �7�

w�Wm 2 Wm 0 ;S� �

1������������2p� d uSu
p exp 2

1

2
�Wm 2 Wm 0 �TS21�Wm 2 Wm 0 �

� �
The elements of the covariance matrix S of the Parzen

window kernel can be optimized by leave-one-out cross

validation of the Parzen density estimate (Viola & Wells,

1995). In the context of images, a critical step in the

mutual information formulation lies in de®ning the prob-

ability density of an image. Viola simply used the gray-

scale values of all pixels as entries of W. Thus, the

density of an image was obtained from a one-dimensional

Parzen window estimate where S has only one coef®cient

to be optimized, while the joint entropy in Eq. (6)

requires a two-dimensional Parzen window with three

coef®cients to be optimized. There are two assumptions

in this approach: (i) all pixels of an image have the same

probability density and (ii) all pixels are independent of

each other. Although it is well known that these assump-

tions are not true for real images, the algorithm seems to

work well in practice.

In order to adapt Viola's method to the Gabor jet repre-

sentation, the Gabor jets for each spatial coordinate replace

the grayscale pixel values in u and v. This change of repre-

sentation introduces one new problem: Parzen windows

now need to be applied to 12-dimensional data for the

image densities, and 24-dimensional data for the joint densi-

ties, but Parzen windows usually do not work well for high

dimensional data. However, as we con®rmed empirically,

the jets of an image actually form low dimensional clusters.

Under these circumstances, Parzen windows still work

properly and the `curse of dimensionality' is circumvented

(Scott, 1992). In optimizing S, for the image density of U
and V, we assumed that S is a diagonal matrix with equal

coef®cients on all diagonal coef®cients:

S � I s 2 �7�
where I denotes the identity matrix. Thus, only one coef®-

cient needed to be optimized by cross validation, as in

Viola's original method. For the joint density estimation,

S was partitioned into four equal blocks:

Sjoint �
Suu Suv

Svu Svv

" #
� Is 2

uu Isuv

Isvu Is 2
vv

" #
�9�

where each block was a diagonal matrix with equal diagonal

coef®cients, such that effectively only three coef®cients,

s 2
uu, s 2

vv; suv � svu had to be optimized. The optimal

coef®cients in all density estimates were determined from

an exhaustive search over a grid of reasonable values,

constrained by the requirement of positive de®niteness of S.

In our experiments described in Section 4.1, for the

computation of the density estimates, at each candidate

match, we use the same set of Gabor jets as those used by

the graph matching search (i.e., jets falling on a regular

grid). The search strategy is also identical across all three

methodsÐLGM, LGM1, and gabor-based MIM. The scene

is uniformly and exhaustively searched in ®ve pixel inter-

vals. Thus, by using the exact same features (at every single

step of the search process) the difference between the LGM,

LGM1, and MIM methods is narrowed down to the differ-

ence between the similarity functions in Eqs. (3), (4) and

(6), respectively.

4. Empirical evaluations

4.1. Task and stimuli

The pattern recognition task we chose as the test bed of

our evaluations is object detection, the task of®nding an object

within a scene. We selected this task because both LGM and

MIM methods have successfully been applied to this problem.

To ensure objectivity, we used a set of stimuli to which neither

method has been previously applied. The stimuli were scenes

composed of digital embryos (Brady, 1999; Brady, 1998).

Digital embryos are 3-D structures generated by a stochastic

process that is modeled after an embryological process (Brady,

1999). Two examples of these objects are shown in Fig. 2. As

can be seen, digital embryos are highly irregular, and they

provide an interesting test bed for the study of object vision,

as they resemble plants and animals. It has also been shown

(Brady, 1999; Brady, 1998) that human subjects can extract

and recognize these patterns based on the types of scenes

shown in Fig. 3(c) and (f).

We refer to the embryo to be detected as the model

L.B. Shams et al. / Neural Networks 14 (2001) 345±354348



embryo. The algorithms were tested using three arbitrary

model embryos. Two of these embryos are shown in

Figs. 3(a) and 4(a). For each model embryo we used 50

scenes containing the embryo, where half of the scenes

contained occlusions. Six examples of the scenes corre-

sponding to the ®rst and second embryo are shown in

Figs. 3(c) and 4(c), respectively. As can be seen in these

pictures, in each scene, the model embryo is embedded in a

background consisting of a clutter of various other embryos.

Scenes were generated at random in terms of the choice and

combination of the embryos constituting the background

and the position of the model embryo within the scene.

The complexity of the scenes is `unbiased' in so far that

they were generated by the inventor of the digital embryos

without any knowledge about our research goals (prior to

this study and for a different application). The irregular form

of the embryos and the cluttered background consisting of

the same type of shapes makes the `foreground' (or model)

embryo indistinct and non-segmentable from the back-

ground in the absence of top-down knowledge about the

model. Although the embryo is three-dimensional, approxi-

mately the same viewpoint is used in all the scenes. In

different scenes, because of translations of the model within

the scene, minor variations in orientation in depth are

present due to the change in the relative position of the

object to the virtual camera (i.e., viewpoint of rendering

of the image). Occluded scenes were created by superim-

posing a grid pattern over the cluttered scenes. Due to the

translations of the embryo across the scenes, varying

segments of the embryo are occluded in different scenes.

These images were meant to mimic the occlusion caused by

viewing scenes from behind a grid window.

In order to test the robustness of the methods with respect

to a variation other than occlusion, we also obtained two

images of the model embryos in Figs. 3(a) and 4(a) which

differed from those embedded in the scenes in terms of

lighting. The variants of these embryos are displayed in

Figs. 3(b) and 4(b), respectively. Both MIM and LGM

methods have been claimed to cope well with common

image variations (Okada, Steffens, Maurer, Hong, Elagin,
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Fig. 2. Two examples of digital embryos.

Fig. 3. Digital embryos and digital embryo scenes. a) An image of the ®rst model embryo. b) Two other images of the embryo shown in (a) under different

illuminations. c) Top row: three examples of the 25 scenes without occlusions against which the detection of embryos in images with (a) and (b) were tested.

Bottom row: three examples of the scenes with occlusions. In each scene the model embryo is embedded in a random position in a background which is

composed of a number of randomly chosen other embryos. In the no variation condition the image in (a) was used as the model to be detected in the scenes

exempli®ed in (c). In the variation condition, the embryos shown in b) were used as models to be detected in the scenes exempli®ed in (c).



Neven, & ven der Malsburg et al., 1998; Viola & Wells,

1995). Our tests, therefore, involve four conditions: (1) the

model embryo to be detected in the cluttered scenes is

(almost) identical to the embryo image embedded in the

scenesÐthe no variation condition (using three embryos

each searched in 25 scenes), (2) the model embryo is

substantially different in terms of lighting from those

embedded in the scenesÐthe lighting variation condition

(using four embryos each searched in 25 scenes), (3) the

model embryo is detected in scenes where the embedded

embryo is partially occludedÐthe occlusion variation

condition (using three embryos each searched in 25 scenes)

and (4) the model embryo is substantially different in terms

of lighting from those embedded in the scenes and is to be

detected in scenes where there is partial occlusion of the

embryoÐthe lighting and occlusion condition (using four

embryos each searched in 25 scenes).

Four algorithms were tested: MIM on grayscale pixel

values (i.e., exactly as prescribed by Viola's original

method (Viola, 1995; Viola & Wells, 1995)), MIM on the

Gabor responses, the original LGM, and LGM1. As a

control we also tested pixel correlation.

4.2. Results

Before examining the performance of the four algorithms,

we assessed the level of dif®culty of the object detection

task with a control experiment using the correlation method

based on the grayscale pixel images. The gray-level correla-

tion method resulted in perfect performance in the no varia-

tion condition, however, the performance dropped to 4 and

10% in the lighting and lighting&occlusion conditions. This

test con®rmed that the illumination variations presented a

signi®cant change in the gray-level distribution of the

images, and the detection task in these conditions is not

trivial anymore.

The performances of the four methods in the four condi-

tions are illustrated in Fig. 5. The vertical axis denotes the

percentage of the correct detection of the model embryo

within the 25 scenes. The bars represent the average perfor-

mance over the test patterns per condition, i.e., three differ-

ent model embryos in the no variation, and occlusion

conditions and four model embryos in the lighting, and

lighting&occlusion conditions, and error bars denoting stan-

dard errors are provided in the plots as well.

The high performance of the MIM method with jets in the

no variation condition indicates that an entropy method can

operate well on high dimensional features such as Gabor

jets. It also con®rms that our strategy for optimizing the

Parzen density estimation parameters is adequate. However,

LGM1, our new LGM method with lateral excitation

achieve the best results throughout all tests.

To compare the relative performance of the methods, we

performed pairwise two-tailed t-tests on the results pooled

across all conditions, as summarized in Table 1. Comparison

between performance of pixel and Gabor jet representations

L.B. Shams et al. / Neural Networks 14 (2001) 345±354350

Fig. 4. Another digital embryo. See caption of Fig. 3 for explanation.



for the MIM method clearly shows that the Gabor jet repre-

sentation is signi®cantly superior to the pixel representation.

This is not surprising, as Gabor wavelets provide robustness to

small changes in size, rotation, illumination, noise, etc. The

performance of LGM is superior to that of pixel-based MIM,

but not the Gabor-based MIM. Finally, the comparison of

the methods when based on Gabor jets demonstrates that the

performance of LGM1 is signi®cantly better than that of the

traditional LGM and MIM.

5. Discussion

Labeled Graph Matching (LGM) (von der Malsburg,

1988) was introduced over a decade ago as a biologically

inspired method for pattern recognition. Our results demon-

strated that despite its age, LGM remains a competitive

algorithm, even in comparison with the modern analytically

developed statistical information processing methods. The

original version of MIM, based on gray-scale pixel values,

had the worst performance. However, replacing the gray-

level features with Gabor jets as the basic representation

improved it so signi®cantly that it performed superior to

LGM. Incorporating a biologically plausible lateral excita-

tion mechanism in LGM, on the other hand, improved its

performance to the extent that LGM1 signi®cantly outper-

formed the Gabor-based MIM.

Several reasons may account for the superiority of LGM1

to (Gabor-based) MIM. First, LGM1 incorporates topologi-

cal constraints that are not available to the MIM algorithm;

it is not obvious how to employ such additional constraints

ef®ciently in MIM. Second, the MIM algorithm assumes

that individual pixels in the image are independent and

have the same probability distribution of the image

featuresÐan assumption that is usually not correct. Third,

the MIM algorithm requires careful parameter optimization

for the Parzen density estimate upon which mutual informa-

tion computation is based. As the optimal values of these

parameters need to be found in a landscape which has

usually several local minima, the parameter search can be

brittle and get stuck in suboptimal values (Viola, 1995).

An interesting question concerns the characteristic of

LGM1 that underlies its superiority over LGM (and the

other methods examined here). Examining Eq. (5) reveals

the following characteristics. Given equal similarity values

across all the nodes in the graph for a given match, the nodes

at the graph boundary receive less excitation from their

neighbors than the nodes in the center, because they have

fewer neighbors. In other words, given random similarity

values, the nodes at the object boundary are weighted less

than those in the center, and thus their contribution to the

total graph similarity is reduced. Of course, this argument

only holds on average; in cases where a boundary node is

surrounded by very high similarity values, or where a center

node is surrounded by low similarity nodes, this will no

longer be the case. However, this subtle weighting scheme

can be important in situations where the objects are to be

detected in cluttered backgrounds4, as in our scenes. In such

L.B. Shams et al. / Neural Networks 14 (2001) 345±354 351

Fig. 5. Performance of the methods in four different conditions. The vertical axis represents the percentage of the correct detection in a set of 25 scenes. Each

bar represents the average of the performance over the model embryos used in each condition (see text). `MIM-pixel' and `MIM-Gabor' refer to the MIM

method operating on gray-level pixels, and operating upon Gabor jets, respectively. `LGM' and `LGM1' represent the traditional Labeled Graph Matching and

that augmented with lateral excitation, respectively.

Table 1

Statistical signi®cance of relative performance between pairs of the four

tested algorithms, using data pooled across all experimental conditions for

each method. The values show that each of the methods performed signi®-

cantly different from each of the other methods. The differences between

the means within each condition were also signi®cant but not shown in the

table. The ranking (in decreasing order) of the methods, as can be seen is:

(1) LGM1, (2) MIM-Gabor, (3) LGM and (4) MIM-pixel

t-test values MIM-Gabor LGM LGM1

MIM-pixel P , 0.005 P , 0.05 P , 0.0005

MIM-Gabor P , 0.005 P , 0.0005

LGM P , 0.0001

4 For a discussion of the effects of background on pattern matching, and

possible remedies please see PoÈtzsch, KruÈger, & von der Malsburg (1996);

WuÈrtz (1995), WuÈrtz (1997). A functional approach to weighting graph

nodes is discussed in KruÈger (1997).



scenes, the jets located at or near the boundary of the object

are affected by the structure in the background, hence lead-

ing to low similarity with the boundary jets in the model

graph. Lateral excitation in effect weighs down the contri-

bution from the boundary jets and improves the robustness

of graph matching.

To investigate whether the success of LGM1 is due

merely to this node weighting we compared its performance

with an analogous algorithm which encodes weighting of

the nodes explicitly based on their number of neighbors, and

hence proximity to the boundary. The algorithm was imple-

mented by substituting Eq. (5) with:

~s�f i; f
0
q�i�� � s�f i; f

0
q�i��1 s�f i; f

0
q�i��

X
r

0:75 �10�

The second term re¯ects the fact that the similarity

between two random jets is on average 0.75, a value

determined from empirical evalutations. Fig. 6 displays

the comparison between the performance of the LGM

algorithm enhanced with lateral excitation of Eq. (5) (i.e.,

the LGM1 method) and the LGM algorithm employing the

weighting of Eq. (10). Although the performances of the two

methods are comparable on scenes with no occlusionÐ

where the main dif®culty is the background effectÐthe

lateral excitation method outperforms weighting systemati-

cally in the occlusion conditions (p , 0.005). This differen-

tial performance on the two conditions demonstrates that

different characteristics subserve the strengths of the two

methods, and that the strength of LGM1 is not merely due

to weighting. While weighting is ®xed across matches,

lateral excitation between the nodes is dynamic and changes

from one match to another. Over the course of the matching

process, lateral excitation favors matches with contiguous

(or topographically smooth) high similarity pro®les over

matches that contain topographically isolated high similar-

ity values (non-smooth high-value pro®les). This, in turn,

favors correct graph correspondences over the incorrect

ones. The false correspondences which may have equal or

higher total graph similarity than the correct correspondence,

tend to be based on a few accidental and hence topologically

sporadic high jet similarities, whereas correct graph corre-

spondences tend to have graph similarities which are much

more coherent both in terms of their value and topology. It is

this coherence that is rewarded by LGM1's lateral excitation

scheme. The addition of variations to the pattern detection

task, in particular occlusions, decreases the total similarity of

the correct correspondence and consequently introduces an

increasing number of false matches. For this reason, the

superiority of LGM1 becomes more pronounced with

increasing amount of dif®culty in the matching task, as nicely

illustrated in Fig. 6. The strength of lateral excitation (and its

superiority to LGM) has also been shown and discussed in a

previous study where the stimuli had no background and

matching had to cope with partial information as well as

variations in size and proportions (Shams, 1999). In such

no-background stimuli, weighting of boundary nodes cannot

explain the improvements shown by LGM1

6. Conclusion

We compared two Labeled Graph Matching algorithms

with a state-of-the-art information theoretic algorithmÐ

mutual information maximizationÐin the task of object

detection. The original version of MIM had the worst

performance since it operated out of gray-level pixels, a

representation that is known to be brittle in face of varia-

tions of lighting, object size, occlusions, noise, etc. Our

modi®ed version of this algorithm replaced the pixel values

with a Gabor wavelet representation and improved it so

signi®cantly that it performed superior to a highly success-

ful version of Labeled Graph Matching. However, our new

LGM1 algorithm that employs lateral interactions in the

graph could achieve signi®cantly better object detection

results than MIM. This seems to be primarily due to the

fact that LGM1 incorporates topological constraints that

are not available to the MIM algorithm.

The need for parameter search makes the MIM algorithm

also signi®cantly more computationally expensive: even

with our highly optimized code for density estimation,

MIM required 2±3 orders-of-magnitude more ¯oating

point operations than LGM/LGM1. In contrast, LGM1, as
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Fig. 6. Comparison of LGM1 with and LGM algorithm that uses ®xed nearest-neighbor node weighting.



the original version, is computationally simple and does not

require any on-line parameter optimization.

7. List of mathematical symbols

J Two dimensional lattice of pixel positions

m Pixel position

k Vector determining the orientation and center

spatial frequency of the wavelet transform

W Gray-scale image

ck(m) Gabor wavelet kernel centered oriented along

vector k and centered around spatial coordinate m
Jkm Gabor wavelet transform of an image with kernel

ck(m)

fi Vector of Gabor wavelet transforms Jkm for a given

m but varying k; referred to as a Gabor Jet

s(fi, fj) Similarity between Gabor jets fi and fj

G Graph

V Set of a graph vertices or Gabor jets

q(i) Correspondence function that maps jet fi of graph

G to jet of graph G 0

S(G,G 0) Similarity between graphs G and G 0 used by LGM

method

SÄ(G,G 0) Similarity between graphs G and G 0 used by

LGM1 method

H(W) Entropy of image W

I(U, V) Mutual information between images U and V

S Covariance matrix

uSu determinant of S
n Total number of pixels in image W

p(W) Probability density of image W

I Identity matrix
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