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Research Report

As we experience the surrounding world, our brains 
effortlessly process sights and sounds, inferring which 
visual sources produced which auditory signals (Parise, 
Spence, & Ernst, 2012; Shams & Beierholm, 2010; Shams, 
Ma, & Beierholm, 2005; Stein, 2012). At first, it might 
seem reasonable to assume that one’s subjective experi-
ence of sights and sounds is similar to that of other  
individuals, but many studies of multisensory processing 
indicate otherwise: Even for the same set of stimuli, some 
individuals frequently integrate audiovisual stimuli, 
whereas other individuals may not integrate at all. This 
type of variability has been shown in several domains, 
including speech perception (Mallick, Magnotti, &  
Beauchamp, 2015), temporal-numerosity perception 
(Shams, Kamitani, & Shimojo, 2000; Stevenson, Zemtsov, 
& Wallace, 2012), and spatial perception (Hairston et al., 
2003; Wozny, Beierholm, & Shams, 2010), which raises 
important questions: Why are different brains so variable 
in their interpretations of our sensory world? And what 
characterizes the elusive, idiosyncratic mechanism that 
binds the senses together inside our heads?

If multisensory integration is dependent on a hard-wired, 
global mechanism (e.g., neuroanatomical connectivity), it 

could be stable across time and generalize across tasks 
involving the same modalities (e.g., across all audiovisual 
tasks) in a given individual. Indeed, one previous study has 
shown strong within-subjects correlations for illusory multi-
sensory percepts using an audiovisual speech task and an 
audiovisual temporal-numerosity-judgment task (Tremblay, 
Champoux, Bacon, & Theoret, 2007), which would suggest 
at least a partially shared substrate of multisensory integra-
tion across tasks. Alternatively, sensory integration could be 
based on local mechanisms, which could differ across tasks 
involving the same modalities. These local mechanisms 
might be stable over time or might be unstable and volatile 
because of factors such as learning, arousal, mood, and cog-
nitive variables.

In principle, any variability across subjects in the 
strength of audiovisual interactions could be driven by 
two distinct factors: differences in the relative reliabilities 
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Abstract
Previous studies have shown a surprising amount of between-subjects variability in the strength of interactions between 
sensory modalities. For the same set of stimuli, some subjects exhibit strong interactions, whereas others exhibit weak 
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We used a rigorous quantitative tool (Bayesian causal inference) to investigate whether integration (i.e., binding) 
tendencies generalize across tasks and are stable across time. We report for the first time that individuals’ binding 
tendencies are stable across time but are task-specific. These results provide evidence against the hypothesis that 
sensory integration is governed by a single, global parameter in the brain.
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of unisensory representations (e.g., in the visual and 
auditory modalities, Fig. 1a) or differences in the ten-
dency to integrate or bind stimuli (henceforth, binding 
tendency) between the two given modalities (Fig. 1b). 
Recent investigations have revealed that although cross-
modal interactions vary across individuals in any given 
task, such interactions can correlate strongly across 
audiovisual tasks within individuals (Stevenson et  al., 
2012; Stevenson & Wallace, 2013); however, no previous 
study has used analytic methods capable of teasing apart 
these two possible sources of variability.

The Bayesian causal inference (BCI) model (Körding 
et  al., 2007; Wozny et  al., 2010) allows quantitative, 
simultaneous estimation of both of these factors: The 
reliability of unisensory processing is computationally 
modeled by sensory likelihoods, and the tendency to 
integrate is captured by a prior for integrating stimuli, 
which we call the binding tendency. The fact that differ-
ences in unisensory processing influence integration 
is  already well established (Alais & Burr, 2004; Ernst 
&  Banks, 2002; Rohe & Noppeney, 2015b); on the 
other hand, the binding tendency, which provides a true 
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Fig. 1. Two possible mechanisms underlying between-subjects variability in cross-modal interactions. The lightbulb and the speaker repre-
sent the true locations of the visual and auditory stimuli in a spatial localization task; the neural representations (likelihood functions) of the 
stimuli are shown by the distributions for vision and audition. The ear icon designates the brain’s final estimate of the perceived auditory 
location. One possible source of between-subjects variability in cross-modal interactions involves differences in relative unisensory reliabili-
ties across subjects (a). If these differences are large (as shown by Individual X), estimates of percepts in the less reliable modality (audition 
in this example) will show a large bias; if these differences are small (as shown by Individual Y), the bias will be smaller. Another possible 
source of between-subjects variability in cross-modal interactions involves differences in the binding tendency, that is, the prior bias for 
perceiving a common cause and integrating the signals (b). As shown in the figure, Individual X’s large bias could be due to a large binding 
tendency, and Individual Y’s small bias could be due to a small binding tendency.
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measure of the brain’s tendency or capacity for integra-
tion, has not been systematically investigated to date. 
Therefore, we used the BCI model to quantitatively and 
rigorously estimate this measure for individual observers 
for two very distinct audiovisual tasks (one involving 
perception of space, the other involving perception of 
time) at two time points (1 week apart) to determine 
whether the binding tendency is stable across time and 
whether it generalizes across tasks.

Method

Subjects

Fifty-nine subjects (25 men, 34 women; age range = 18–
30 years) completed two experimental sessions, spaced 
one week apart. The power analysis indicated that a sam-
ple size of 59 subjects was required for the study to have 
80% power to detect a medium-sized effect (ρ = .35) at 
an α level of .05; thus, we stopped collecting data when 
we reached this number of subjects. Subjects were paid 
$10 per hour for their participation in this study. Seven 
subjects missed their scheduled appointment for Session 
2 and were rescheduled to complete it within 3 days of 
the missed appointment. Because their data were not 
anomalous in any way compared with data from the sub-
jects who completed the sessions exactly 1 week apart, 
these subjects were included in the sample.

On a given day, each subject participated in two tasks: 
a temporal-numerosity judgment task (Shams et al., 2000, 
2005) and a spatial localization task (Körding et al., 2007; 
Wozny et al., 2010). The tasks were performed succes-
sively with a 7-min break in between, and the order of 
the two tasks was counterbalanced across subjects.

Temporal task

The temporal task in this study consisted of counting the 
number of flashes and beeps that were presented, which 
ranged from one to four. Visual stimuli consisted of brief 
flashes of a white disk (1.5° of visual angle in diameter) 
presented on a CRT monitor for one frame (~10 ms); 
auditory stimuli consisted of brief beeps (3.5-kHz carrier 
frequency at a 68-dB sound-pressure level) played from 
speakers on the side of the monitor for 10 ms each; if 
multiple stimuli were presented within a single modality, 
the stimulus onset asynchrony (i.e., the time between the 
onset of two consecutive pulses) was 60 ms. For unisen-
sory trials, one to four flashes or beeps occurred. For 
bisensory trials, the centers of the visual and auditory 
trains were aligned. For instance, if equal numbers of 
beeps and flashes were presented, the beeps and flashes 
were perfectly synchronized. If two beeps and one flash 
were presented, the flash fell halfway between the onset 

of the two beeps; if three beeps and one flash were pre-
sented, the onset of the flash was synchronous with the 
onset of the second beep, and so on. The 24 possible 
experimental conditions consisted of pseudorandomly 
interleaved unisensory visual, unisensory auditory, and 
bisensory presentations. Fifteen trials per condition were 
presented, for a total of 360 trials. Therefore, 75% of the 
bisensory trials presented incongruent stimuli. The 360 
trials were divided into four blocks, with 90 trials in each 
block. Subjects were allowed 1 to 2 min to rest between 
blocks. Before subjects began the experiment, they took 
part in a 16-trial practice phase consisting of both unisen-
sory and bisensory stimuli. No feedback was provided 
during the practice phase.

Each trial in the experiment began with subjects fixat-
ing a centrally presented cross. Once fixation was estab-
lished by a ViewPoint EyeTracker (Arrington Research, 
Scottsdale, AZ), visual stimuli were displayed at 7° of 
visual angle below fixation, auditory stimuli were played 
from the speakers, and subjects were prompted with a 
sentence on the screen to report the perceived number 
of stimuli (1–4) in each modality. Responses were given 
by pressing a number key on a wireless keyboard. In 
unisensory visual trials, subjects were presented with the 
instruction, “Report the number of flashes you see.” In 
unisensory auditory trials, subjects were presented with 
the instruction, “Report the number of beeps you hear.” 
On bisensory trials, observers were prompted to report 
their percept in each of the two modalities. The order of 
responses was always the same for a given subject (flash-
beep or beep-flash); however, this order was counterbal-
anced across subjects. On bisensory trials, the number of 
flashes and beeps presented could be the same (congru-
ent trials) or different (incongruent trials).

Spatial task

The spatial task in this study consisted of localization of 
visual, auditory, and audiovisual stimuli along a display 
axis, with five possible stimulus positions (−13°, −6.5°, 0°, 
6.5°, and 13°). Visual stimuli were presented by a ceiling-
mounted projector (with a resolution of 1,280 × 1,024 
pixels and a refresh rate of 75 Hz) onto an acoustically 
transparent black cloth subtending much of the visual 
field (134° width × 60° height), located 52 cm in front of 
the observers. Auditory stimuli were played from free-
field speakers (5 × 8 cm; extended range, paper cone) 
behind the cloth in positions that coincided with the 
locations of the projected visual stimuli. Visual stimuli 
consisted of a white disk (0.41 cd/m2) masked with a 
Gaussian envelope of 1.5°, and auditory stimuli were 
ramped white-noise bursts with a sound-pressure level of 
59 dB at a distance of 52 cm from the speaker. Both audi-
tory and visual stimuli were presented for only 35 ms. 
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The black cloth was draped over the large wooden frame 
that housed the speakers and covered the entire range of 
the subjects’ field of view when their chins rested on the 
chinrest, even though only a limited spatial range directly 
in front of the observer (spanning 26° of the display axis) 
was tested. Conditions included five unisensory visual 
stimuli (from −13° to +13°), five unisensory auditory 
stimuli (from −13° to +13°), and 25 spatial combinations 
of bisensory stimuli. Therefore, 80% of the bisensory tri-
als presented spatially incongruent stimuli. Fifteen trials 
per condition were presented, for a total of 525 trials. 
Each trial began with a fixation cross, and an eye tracker 
was used to ensure that subjects were fixating properly 
before presenting stimuli.

Once subjects were fixating within 3.0° of the fixation 
cross, stimuli were presented 7° below fixation along the 
display axis. After their presentation, a cursor appeared at 
a random location on a screen. Subjects were asked to 
quickly and accurately localize all stimuli that were dis-
played; this could be a flash of light, a burst of sound, or 
both, and stimuli could be either spatially congruent or 
spatially incongruent. The response cursor was displayed 
on the screen by the ceiling-mounted projector and could 
move continuously along the display axis; subjects could 
move the cursor either to the left or right with the track-
ball on the mouse, and they pressed a mouse button to 
record their responses. The cursor could move beyond 
the location of the most eccentric stimulus positions 
(−13° and +13°), so the response range was not con-
strained. For bisensory stimuli, the auditory and visual 
signals were always temporally synchronous, and sub-
jects always localized the light and sound in the same 
order, but the order of response (light-sound or sound-
light) was counterbalanced across subjects.

Using the BCI model, the binding tendency was quan-
titatively estimated for each individual in each task on 
each day. If sensory integration in the brain is based on a 
global mechanism, then the estimated binding tendency 
should be correlated across tasks; if it is based on a task-
specific mechanism, then the binding tendency should 
show no correlation across tasks. In addition, if integra-
tion processes are stable in the brain, binding tendencies 
should show consistency across time; alternatively, if the 
binding tendency is volatile and influenced by transient 
factors, estimated values for the binding tendency in a 
given task across two sessions should show little or no 
correlation.

Computational modeling methods

Three factors affect the strength of cross-modal interac-
tions: the degree of consistency, similarity, or congruence 
of the stimuli (factor a); the relative reliability and preci-
sion of representation of the unisensory signals (factor b; 

Fig. 1a); and the strength of the brain’s tendency to bind 
sensory information across the relevant modalities (fac-
tor c; Fig. 1b). As in many previous studies of multisen-
sory integration, all of our participants were presented 
with the same set of stimuli, effectively controlling for 
factor a. Thus, the variability in cross-modal interactions 
across individuals could be due to either factor b or fac-
tor c (see Fig. 1). Because it is already well established 
that observers vary in their unisensory abilities, factor b 
was not of interest in this study. To investigate factor c, 
we used a BCI model to characterize and quantify the 
binding tendency in each individual observer in a fashion 
that was not confounded with the precision of unisen-
sory encoding.

We used a variant of a BCI model with four free 
parameters to model each subject’s data (for details, see 
Wozny et al., 2010) from each task. The data from each 
task and session were kept separate in the modeling 
work, which resulted in four sets of parameter fits for 
each subject. The free parameters in the model included 
the standard deviation of the visual likelihood, the stan-
dard deviation of the auditory likelihood, the standard 
deviation of a central prior over space, and, most impor-
tantly, the prior probability of a common cause, which 
we call the “binding tendency.” Three possible percep-
tual-decision strategies with 10 different sets of initial 
seeds for each strategy were used in optimizing the 
model parameters for each subject (30 initial seeds total) 
for each subject’s data from Session 1 and Session 2. 
Parameters from the best-fitting decision strategy and 
seed were used for the final analysis.

Results

Our results indicate that although subjects’ binding ten-
dencies were quite stable across time within a domain, 
they showed little evidence of generalizing across tasks 
(Fig. 2). Specifically, in the spatial task, subjects were 
extremely consistent from one session to the next; the 
estimated binding tendency from Session 1 was quite 
similar to the estimated binding tendency from Session 2 
(differences between sessions: M = −0.005, SD = 0.18), 
r = .86, p < .00001 (Fig. 2a). In the numerosity-judgment 
task, subjects were slightly more variable in their binding 
tendencies but still showed a strong consistency from 
one session to the next (differences between sessions: 
M = 0.03, SD = 0.25), r = .64, p < .00001 (Fig. 2b). Com-
parisons across tasks within a session, however, revealed 
no correlation between the binding tendency for the spa-
tial task and the binding tendency for the temporal task—
Session 1: r = .11, p = .37 (Fig. 2c); Session 2: r = .08, 
p = .54 (Fig. 2d).

For the stability analyses, we used strict criteria to 
evaluate the consistency of subjects’ binding tendencies 
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from one session to the next. Consistent binding tenden-
cies should fall near the identity line in Figures 2a and 2b. 
It is important to note that we determined the binding 
tendencies by applying a parameter optimization proce-
dure using 10 sets of initial seeds. The same exact data 
set might result in different estimates of binding tendency 
depending on the initial state of the optimization proce-
dure (i.e., the parameter seeds used). To get a measure of 
the reliability of the parameter-optimization process (or, 
in other words, to get a sense of the degree to which vari-
ability in the estimation process can be expected to affect 
variability in the estimates of binding tendency), we 

calculated the standard deviation of the binding tendency 
estimate across different parameter-estimation runs. 
Therefore, even if the binding tendency for an individual 
was perfectly constant over time, we would still expect 
the binding tendency estimates to deviate somewhat 
from the unity line within this range some of the time.

To obtain the standard deviation of the estimate of the 
binding tendency parameter, we obtained optimal param-
eter fits five times for each subject and each session, each 
time using a distinct set of 10 initial seeds. We then cal-
culated the standard deviation of the five optimal bind-
ing-tendency estimates from each set and took the 
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Fig. 2. Stability and generalization of the binding tendency: the relationship between the binding tendency in Session 1 and Session 2 for the (a) 
spatial and (b) temporal tasks and the relationship between the binding tendency in the temporal task and the spatial task in (c) Session 1 and (d) 
Session 2. The black dots represent the best model fit from 10 initial seeds. In (a) and (b), the black lines are the identity lines, which represent 
perfect stability, and the dashed lines are the best-fitting regression lines; the shaded areas show the standard deviation of optimal parameter fits 
(for the same data set, but using different seeds for fitting), which gives an indication of how much noise could be expected as a result of variability 
in the parameter-fitting procedure.
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average of these standard deviations across all data sets 
(all sessions and all participants). This provided a reliable 
estimate of variability (or noise) in the estimation of the 
binding-tendency parameter (see Figs. 2a and 2b). In the 
spatial task, 33 of 59 subjects fell within 1 standard devia-
tion of the estimate, and in the temporal task, 29 of 59 
subjects fell in this region, which indicates that about half 
of subjects were extremely stable, and the values for 
most of the remaining subjects did not drastically differ 
from those of the subjects who fell within 1 standard 
deviation of the estimate of variability.

The mean deviation of the binding tendency, which is 
the average change from Session 1 to Session 2 across all 
subjects, was minimal for both tasks (−.005 for the spatial 
task, .03 for the temporal task), but the temporal task 
showed somewhat more deviation. Likewise, the variabil-
ity of deviations from zero was larger for the temporal 
task (.25) than for the spatial task (.18). Therefore, over-
all, the spatial task showed a stronger stability than the 
temporal task.

Our criterion for generalization was more lax than the 
criterion for stability. Given that the tasks are quite differ-
ent, the required binding tendency should not be the 
same across tasks. However, if the binding tendency is 
driven by a common factor (e.g., connectivity between 
auditory and visual regions), then there should be at least 
a correlation between the binding tendencies across the 
two tasks. For example, if a subject has a large binding 
tendency in one task, that subject should show a large 
(although not necessarily identical) binding tendency in 
the other task as well, and the same would be true for 
small tendencies. Thus, in these analyses, we examined 
whether any correlation existed between binding tenden-
cies across the two tasks. Figures 2c and 2d show that 
there was no relationship between the binding tendency 
from the spatial task and the binding tendency from the 
temporal task. In other words, the tendencies across tasks 
were neither identical nor correlated.

Given that binding tendency is an important factor 
driving cross-modal interactions, one would expect it to 
correlate with cross-modal interactions observed in sub-
jects’ behavior. A commonly used behavioral measure of 
cross-modal interactions is cross-modal bias, which refers 
to the amount of bias in estimates of the less reliable 
modality as a result of influences of the more reliable 
modality. For example, in the spatial task, auditory esti-
mates are often pulled toward the location of visual stim-
uli, and the degree to which this occurs is known as 
auditory bias. Figures 3a and 3b show that the correlation 
between binding tendency and cross-modal interaction, 
as measured by the amount of auditory bias (Aresponse – 
Alocation/Vlocation – Alocation) in the spatial task, was quite 
strong: r = .84 for Session 1 and r = .89 for Session 2, p < 
.00001 for both sessions. In the temporal-numerosity 

task, the estimated number of visual events is often 
biased by the number of auditory events and can be 
quantified by visual bias (Vresponse – Vnumber /Anumber –  
Vnumber). Indeed, as shown in Figures 3c and 3d, the cor-
relation between binding tendency and visual bias in the 
numerosity task was .57 for Session 1 and .46 for Session 
2, p < .001 for both days. These results show how the 
binding tendency parameter, which provides a clean, 
unconfounded measure of the tendency to bind sensory 
information, drove the strength of the interactions 
between the auditory and visual modalities in the two 
tasks.

Discussion

In this study, we used a BCI model to characterize and 
quantify the binding tendency in each individual observer 
in a manner that did not confound binding tendency with 
the precision of unisensory encoding. Our results regard-
ing the binding tendency provide strong evidence that 
spatial and temporal integration processes are not gov-
erned by a single, universal parameter in the brain. 
Instead, integration processes within these domains are 
governed by distinct perceptual biases that are, nonethe-
less, stable over time.

The binding tendency’s observed stability over time 
makes it more tractable and allows future studies to 
determine how this tendency may be modulated in vari-
ous domains. Given that research shows that a deficit in 
multisensory integration is associated with several disor-
ders, such as autism (e.g., Foxe et al., 2015; Stevenson, 
Siemann, Schneider, et  al., 2014; Stevenson, Siemann, 
Woynaroski, et  al., 2014; Wallace & Stevenson, 2014), 
dyslexia (e.g., Hahn, Foxe, & Molholm, 2014; Harrar 
et al., 2014), and schizophrenia (e.g., Stekelenburg, Maes, 
Van Gool, Sitskoorn, & Vroomen, 2013; Szycik et  al., 
2009; Williams, Light, Braff, & Ramachandran, 2010), the 
elucidation of the characteristics of the binding tendency 
could have important clinical and educational implica-
tions. In addition, the stability and task specificity of the 
binding tendency observed in the present study is consis-
tent with the stability and task specificity reported else-
where for synesthesia, which could be interpreted as an 
extreme, unique manifestation of the binding tendency 
(Ghazanfar & Schroeder, 2006; Newell & Mitchell, 2015; 
Parise & Spence, 2009).

Recent research has revealed that cross-modal interac-
tions start at early stages of sensory processing, including 
primary cortical areas that were traditionally believed 
to be strictly unisensory (e.g., Foxe & Schroeder, 2005;  
Ghazanfar & Schroeder, 2006). Although the BCI model 
used here for the analysis of behavioral data is a compu-
tational model (as opposed to a neural model) and there-
fore does not make explicit predictions about the 
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locations of unisensory and multisensory processing 
areas in the brain, one recent study using functional MRI 
and a spatial localization task made progress in this area 
by mapping estimates from this model onto different cor-
tical areas (Rohe & Noppeney, 2015a). However, more 
research is needed to shed light on the neural, anatomi-
cal, and physiological correlates of the binding tendency 
in the nervous system.

Finally, it is important to note that in the current study, 
only one task was investigated in each domain (i.e., 

temporal and spatial); thus, it remains unclear whether 
the lack of generalization between the two tasks reflects 
task specificity or domain specificity of the binding ten-
dency. Thus, future studies should map the boundary of 
the task specificity found here by exploring the binding 
tendency in different tasks within the same or similar 
perceptual domains.
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Fig. 3. Scatterplots (with best-fitting regression lines) showing the relationship between the average amount of auditory bias across all incongru-
ent conditions and the binding-tendency estimates in the spatial task in (a) Session 1 and (b) Session 2, and the relationship between the average 
amount of visual bias across all incongruent conditions and binding-tendency estimates in the temporal task in (c) Session 1 and (d) Session 2. 
Auditory bias was computed as in Körding et al. (2007). For each spatially discrepant trial, auditory bias was computed by subtracting the actual 
auditory location from the subject’s auditory spatial estimate and dividing that difference by the distance between the spatially discrepant visual and 
auditory stimuli. We computed this measure for all trials in each incongruent condition, and we computed the average bias across all conditions. 
The visual bias for a temporally discrepant trial was computed by subtracting the actual number of visual events that occurred from each subject’s 
visual numerosity judgment and dividing that difference by the difference between the number of auditory beeps and number of visual flashes that 
were presented. We computed this measure for all trials in each incongruent condition and then computed the average bias across all conditions.
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